DNA-Based Tracers for the Characterization of Hydrogeological Systems—Recent Advances and New Frontiers

Author:

Zhang YuranORCID,Huang TianmingORCID

Abstract

Tracer technologies based on naturally occurring substances or intentionally introduced compounds have a broad spectrum of applications in hydrogeological research and subsurface resource management. DNA (deoxyribonucleic acid)-based tracers, with unlimited unique variations and exceptional specificity, could potentially map the complex intricacies of subsurface flow networks in greater detail than traditional tracer methods. Here, we review recent advances in DNA-based tracer research involving modern culture-independent (i.e., molecular) measurement techniques for subsurface/flowpath characterization purposes. The two broad categories of DNA-based tracers, i.e., synthetic and naturally occurring, are further classified into four specific types: “naked DNA”, “encapsulated DNA”, “barcoding microbial communities”, and “indicator microbial communities”. We summarize and compare the basic methodological workflows for each type of DNA-based tracer and provide an overview of research developments in the past two decades, covering both laboratory/field-scale experiments and data interpretation methods. Finally, we highlight remaining questions and challenges for each type of DNA-based tracer in terms of practicality. Future research directions are also identified, including the application of emerging DNA tracer methods to a wider range of geological formations. Fundamental characteristics of these novel tracers need to be better understood, and their applicability under a broader range of engineering scenarios requires further validation.

Funder

National Natural Science Foundation of China

the Second Tibetan Plateau Scientific Expedition and Research Program

Shuimu Tsinghua Scholar Program at Tsinghua University

Chinese International Postdoctoral Exchange Fellowship Program

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3