Application of the Tracer Test in a Hydrogeological Survey for a Pumped Storage Power Station

Author:

Chen Wanlin1,Zhang Jie2,Chen Liqiang3,Miao Kehan2,Dong Xiaosong2ORCID,Huang Yong2

Affiliation:

1. Huadong Engineering (Fujian) Corporation Limited, Fuzhou 350003, China

2. School of Earth Sciences and Engineering, Hohai University, No. 1, Xikang Road, Nanjing 210098, China

3. PowerChina Huadong Engineering Corporation Limited, Hangzhou 310014, China

Abstract

In areas with complex hydrogeological conditions, the tracer test method is often used as an effective means in hydrogeological surveys. According to the results of tracer tests, hydrogeological parameters, including hydraulic gradient and permeability coefficient, fracture network leakage passages and their scale, and groundwater flow rate and direction can be quantitatively determined. This paper takes the upper reservoir of Yongxin Pumped Storage Power Station in Jiangxi Province as the research object, and focuses on the complex hydrogeological conditions of the upper reservoir. Three sets of tracer tests and multiple sets of single-hole flow rate and direction tests were conducted on the left and right banks of the reservoir and near surface gullies. The results showed that ZKS18 received tracers in all three tests, which indicates a close hydraulic connection between ZKS18 and the left bank, right bank, and surface gullies within the reservoir. Based on the single or multiple peak values of the tracer, it was determined that there are 1–6 leakage passages in the fractured rocks, with leakage passage sizes of 0.1–0.4 mm. According to the single-hole flow rate and flow direction tests, a self-developed instrument was used to determine the groundwater flow rate and flow direction at different depths in the test holes, which yielded results that were basically consistent with the results of the three-hole method. These results provide a basis for the use of tracer tests in hydrogeological surveys for water conservancy and hydropower engineering, and anti-seepage design of upper reservoirs.

Funder

National Natural Science Foundation of China Joint Fund Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3