Determination of Foam Stability in Lager Beers Using Digital Image Analysis of Images Obtained Using RGB and 3D Cameras

Author:

Nyarko Emmanuel KarloORCID,Glavaš HrvojeORCID,Habschied KristinaORCID,Mastanjević KrešimirORCID

Abstract

Foam stability and retention is an important indicator of beer quality and freshness. A full, white head of foam with nicely distributed small bubbles of CO2 is appealing to the consumers and the crown of the production process. However, raw materials, production process, packaging, transportation, and storage have a big impact on foam stability, which marks foam stability monitoring during all these stages, from production to consumer, as very important. Beer foam stability is expressed as a change of foam height over a certain period. This research aimed to monitor the foam stability of lager beers using image analysis methods on two different types of recordings: RGB and depth videos. Sixteen different commercially available lager beers were subjected to analysis. The automated image analysis method based only on the analysis of RGB video images proved to be inapplicable in real conditions due to problems such as reflection of light through glass, autofocus, and beer lacing/clinging, which make it impossible to accurately detect the actual height of the foam. A solution to this problem, representing a unique contribution, was found by introducing the use of a 3D camera in estimating foam stability. According to the results, automated analysis of depth images obtained from a 3D camera proved to be a suitable, objective, repeatable, reliable, and sufficiently sensitive method for measuring foam stability of lager beers. The applied model proved to be suitable for predicting changes in foam retention of lager beers.

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3