Effect of Aeration on Yeast Community Structure and Volatile Composition in Uninoculated Chardonnay Wines

Author:

Varela CristianORCID,Cuijvers Kathleen,Van Den Heuvel Steven,Rullo Mark,Solomon MarkORCID,Borneman AnthonyORCID,Schmidt Simon

Abstract

Uninoculated wines are regarded as having improved mouthfeel and texture and more complex flavor profiles when compared to wines inoculated with commercial S. cerevisiae strains. Uninoculated fermentation involves a complex microbial succession of yeasts and bacteria during fermentation. Microbial population dynamics are affected by several factors that can ultimately determine if a particular species or strain contributes to wine aroma and flavor. In this work, we have studied the effect of aeration, a common winemaking practice, on the yeast microbiota during uninoculated Chardonnay wine fermentation. The timing of aeration and then aeration intensity were evaluated across two successive vintages. While the timing of aeration significantly impacted fermentation efficiency across oxygen treatments, different levels of aeration intensity only differed when compared to the non-aerated control ferments. Air addition increased the viable cell population size of yeast from the genera Hanseniaspora, Lachancea, Metschnikowia and Torulaspora in both vintages. While in 2019, a high relative abundance was found for Hanseniaspora species in aerated ferments, in 2020, T. delbrueckii was visibly more abundant than other species in response to aeration. Accompanying the observed differences in yeast community structure, the chemical profile of the finished wines was also different across the various aeration treatments. However, excessive aeration resulted in elevated concentrations of ethyl acetate and acetic acid, which would likely have a detrimental effect on wine quality. This work demonstrates the role of aeration in shaping yeast population dynamics and modulating a volatile profile in uninoculated wines, and highlights the need for careful air addition to avoid a negative sensory impact on wine flavor and aroma.

Funder

Wine Australia

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3