A Study of Condensates Collected during the Fermentation of Grape Must

Author:

Humaj Jakub1ORCID,Baron Mojmir1ORCID,Kumsta Michal1,Sochor Jiri1ORCID,Pavlousek Pavel1

Affiliation:

1. Department Viticulture & Enology, Mendel University in Brno, Valticka 337, 69144 Lednice, Czech Republic

Abstract

This article deals with the analysis of the condensates which are formed from fermentation gases during the fermentation of grape must. The experiment was divided into two parts. In the first part, the evolution of the individual volatiles was monitored throughout the whole fermentation process of the Riesling variety. In the second part, the condensates from three different grape varieties (Riesling, Merlot, Sauvignon blanc) were investigated and the total content of the selected volatile substances was measured at the end of the fermentation. Attention was focused on the measurements using a GC-MS (gas chromatography-mass spectrometry) for the volatile substances: isoamyl alcohol, isobutyl alcohol, 1-propanol, ethyl acetate, ethyl hexanoate, ethyl octanoate, ethyl decanoate, acetaldehyde, acetic acid, and acetoin. In addition, changes in the alcohol content of the condensate, with respect to the fermentation phase, were analysed. From the results of part 1, the quantity of the substances under investigation produced during fermentation was determined. The highest concentration of flavour compounds was during the fourth and fifth days of fermentation. The most dominant substance was isoamyl alcohol with a concentration of 1267 mg−1.The results of part 2 led to a comparison of the overall profile of volatiles between the varieties. The results showed that the condensates have both a high content of volatile substances and of alcohol. It was also shown that the Sauvignon blanc variant had the highest number of volatile compounds in the representation. The Merlot and Riesling variants were very similar. This product has an exceptionally high potential for further use in the wine or food industry.

Funder

Mendel University in Brno

Research Infrastructure for Young Scientists

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3