Effect of a Combination of Ultrasonic Germination and Fermentation Processes on the Antioxidant Activity and γ-Aminobutyric Acid Content of Food Ingredients

Author:

Naumenko Natalya1ORCID,Fatkullin Rinat1,Popova Natalia1,Ruskina Alena1,Kalinina Irina1ORCID,Morozov Roman2,Avdin Vyacheslav V.2,Antonova Anastasia3ORCID,Vasileva Elizaveta4

Affiliation:

1. Department of Food and Biotechnology, South Ural State University (National Research University), 76 Lenin Avenue, Chelyabinsk 454080, Russia

2. Scientific and Educational Center “Nanotechnologies”, South Ural State University (National Research University), 76 Lenin Avenue, Chelyabinsk 454080, Russia

3. Faculty of Biotechnology, ITMO University, Kronverksky Prospect, 49, A., St. Petersburg 197101, Russia

4. Department of Digital Technologies for Transport Process Management, RTH (MIIT), Obraztsova st., 9, Building 9, Moscow 127994, Russia

Abstract

Whole-grain food ingredients enable the most balanced food products to be obtained, thus forming an important part of a healthy and sustainable diet. Wheat and barley grains are a traditional source of food ingredients for breads, breakfasts, drinks, and snacks in Russia. Such foods are suitable for all ages with many health benefits. However, the modern metropolitan citizen consumes large quantities of refined cereal products, thus impoverishing their diet. An alternative in dietary fortification could be sprouted and fermented food ingredients with an increased nutritional value. The present work was carried out to study the effect of a combination of germination with ultrasound treatment and fermentation with a complex starter of cereal crops on antioxidant activity and γ-aminobutyric acid content of food ingredients with the possibility of using them in the matrix of food products. In order to obtain germinated food ingredients, we used crops with the highest yield in the Ural region (Russia): two samples of soft spring wheat (Triticum aestivum L.) and a sample of spring barley grain (Hordeum vulgare L.). Obtaining food ingredients was divided into successive stages: ultrasonic treatment (22 ± 1.25 kHz) was performed by means of changing power and length of time (245 W/L, intensity for 5 min); germination and fermentation used complex starter “Vivo Probio”. The proposed technology of germination with haunting fermentation of cereal crops resulted in food ingredients with a more uniform distribution of granulometric composition, a low proportion of fine particles (4.62–104.60 µm) (p < 0.05) and large particles (418.60–592.00 µm) (p < 0.05). The particle size range (31.11–248.90 μm) (p < 0.05) was predominant. The germination and fermentation process resulted in 26 to 57% (p < 0.05) lower phytic acid content, 35 to 68% (p < 0.05) higher flavonoid content, 31 to 51% (p < 0.05) higher total antioxidant activity, 42.4 to 93.9% (p < 0.05) higher assimilability, and 3.1 to 4.7 times (p < 0.05) higher γ-aminobutyric acid content, which will allow production of food products with pronounced preventive action. The data was analyzed via one-way ANOVA analysis of variance using the free web-based software. The combination of the germination process with ultrasound treatment and subsequent fermentation with a complex starter can be used to support the development of healthful food products with increased GABA and antioxidant activity.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3