Effect of Temperature and Fermentation Time on Fermentation Characteristics and Biogenic Amine Formation of Oat Silage

Author:

Jia TingtingORCID,Yu Zhu

Abstract

Temperature is known to have a clear influence on the formation of biogenic amines during fermentation. To improve the quality of oat silage, the impact of ensiling temperature on the fermentation, microbiological and chemical characteristics, as well as biogenic amines (BAs) was investigated. Vacuum bag mini silos of oat forage were incubated at four different temperature levels (10, 20, 30 and 37 °C) and opened on day 0, 1, 3, 7, 15 and 60. All oat silages were sampled to evaluate the fermentation quality and biogenic amine production. Results showed that putrescine, cadaverine and tyramine were the most prevalent biogenic amines in oat silage, representing approximately about 90% of the total biogenic amines (TBAs) investigated. Ensiling increased the β–phenylethylamine, putrescine, cadaverine, histamine and tyramine accumulation in oat silage at the four incubation temperatures. On day 60, the β–phenylethylamine, cadaverine, histamine, tyramine and TBAs levels at a high temperature (37 °C) were significantly higher than those at a lower temperature (10, 20 and 30 °C); 10 °C fermentation increased the putrescine content in oat silage. A closed relationship between fermentation properties and BAs showed that the silages containing higher lactic acid, propionic acid and ammonia nitrogen and lower pH value had more BA content in oat silage. In conclusion, the ensiling process caused a significant increase in the amounts of BAs, except spermidine and spermine. The oat silage made in elevated temperature (30 and 37 °C) environments may accumulate more BAs than at a low temperature (10 °C), but low temperature (10 °C) fermentation may increase the putrescine levels in silage. The results suggested that ensiling at the proper temperature could retard BA formation and enhance the quality of oat silage.

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3