Starmerella bacillaris Strains Used in Sequential Alcoholic Fermentation with Saccharomyces cerevisiae Improves Protein Stability in White Wines

Author:

Moreira Luiza de Paula DiasORCID,Nadai Chiara,da Silva Duarte ViníciusORCID,Brearley-Smith Edward JohnORCID,Marangon MatteoORCID,Vincenzi Simone,Giacomini AlessioORCID,Corich Viviana

Abstract

Haze can appear in white wines as a result of the denaturation and subsequent aggregation of grape pathogenesis-related (PR) proteins. Yeast cell-wall polysaccharides, particularly mannoproteins, represent a promising strategy to reduce the incidence of this phenomenon. The aim of this study was to evaluate the effects of 13 Starmerella bacillaris strains, in sequential fermentation with Saccharomyces cerevisiae, on wine protein stability of three white wines (Sauvignon blanc, Pinot grigio, and Manzoni bianco). The resulting wines were characterized in terms of their chemical composition, content of PR proteins and polysaccharides, and heat stability. In addition, the mannoprotein fraction was purified from six wines, five produced with S. bacillaris and one with S. cerevisiae EC1118 used as control. Generally, wines produced with S. bacillaris strains were more heat-stable, despite generally containing higher amounts of PR proteins. The increased heat stability of Starmerella wines was attributed to the stabilizing effect resulting from their higher concentrations of both total polysaccharides and mannoprotein fractions. In particular, for the most heat unstable wine (Manzoni bianco), the low MW mannoprotein fraction resulted to be the most involved in wine stability. The ability to produce wines with different heat stability was demonstrated to be strain-dependent and was more evident in the most unstable wines. By reducing fining waste, the use of S. bacillaris as an enological starter can be proposed as a new tool to manage wine protein stability for a more sustainable winemaking.

Funder

Fondazione Cassa di Risparmio di Padova e Rovigo

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3