Lactic Acid Bacteria and Formic Acid Improve Fermentation Quality and Beneficial Predicted Functional Characteristics in Mixed Silage Consisting of Alfalfa and Perennial Ryegrass

Author:

Lei Yao1,Li Maoya1,Liu Yinghao2,Wang Jiachuhan1,He Xiangjiang1,Zhao Yuanyuan1,Chen Yulian1,Cheng Qiming13ORCID,Chen Chao1

Affiliation:

1. College of Animal Science, Guizhou University, Guiyang 550025, China

2. Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China

3. College of Grassland, Resources and Environment, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture, Key Laboratory of Grassland Resources, Inner Mongolia Agricultural University, Ministry of Education, Hohhot 010010, China

Abstract

The purpose of the present study was to investigate the effect of additives on the fermentation properties of ensiled mixed alfalfa and perennial ryegrass silage in the karst terrain of Southwest China. A mixture of alfalfa and perennial ryegrass was ensiled at a ratio of 3:7 using three experimental treatments: (1) CK (without additives) and distilled water (5 mL kg−1 fresh weight (FW)); (2) FA and formic acid (88%) (5 mL kg−1 FW); and (3) LAB combined with the application of Lactiplantibacillus plantarum and Lentilactobacillus buchneri (2 × 107 cfu/g FW). All samples were packed manually into polyethylene bags, and three polyethylene bags from each treatment were sampled on days 7, 15, and 45. The findings demonstrated that the pH values of all the mixed silages gradually decreased during ensiling. The lactic acid (LA) and acetic acid (AA) contents increased gradually with ensiling time and peaked after 45 days of ensiling. After 45 days of ensiling, the FA and LAB groups effectively preserved the nutrient content of the mixed silage, which presented a reduced neutral detergent fiber and acid detergent fiber content (p < 0.05) and higher water-soluble carbohydrate content (p < 0.05) than the CK group. The fermentation quality of the mixed silages in the FA and LAB groups improved, as indicated by higher (p < 0.05) LA contents and lower (p < 0.05) pH and ammoniacal nitrogen contents after 45 days of ensiling compared to those in the CK group. As fermentation progressed, the abundance of harmful microorganisms (Hafnia obesumbacterium, Enterobacteriaceae, and Sphingomonas) and beneficial microorganisms (Lactiplantibacillus and Lentilactobacillus) decreased and increased, respectively. In addition, compared to those in the CK group, the FA group had higher abundances of “lipid metabolism” and “biosynthesis of antibiotics” and lower abundances of “membrane transport”. Briefly, the results of this study suggest that the incorporation of FA and LAB additives could improve the quality of fermented mixed silage, and that FA is better than LAB. This information is useful for combining forage resources to satisfy the requirements for high-protein feed and for manufacturing ruminant feed annually.

Funder

the National Key Research and Development Subject

Guizhou Provincial Science and Technology Project

Guizhou University Cultivation Project

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3