Digital Smoke Taint Detection in Pinot Grigio Wines Using an E-Nose and Machine Learning Algorithms Following Treatment with Activated Carbon and a Cleaving Enzyme

Author:

Summerson VasilikiORCID,Gonzalez Viejo ClaudiaORCID,Torrico Damir D.ORCID,Pang AlexisORCID,Fuentes SigfredoORCID

Abstract

The incidence and intensity of bushfires is increasing due to climate change, resulting in a greater risk of smoke taint development in wine. In this study, smoke-tainted and non-smoke-tainted wines were subjected to treatments using activated carbon with/without the addition of a cleaving enzyme treatment to hydrolyze glycoconjugates. Chemical measurements and volatile aroma compounds were assessed for each treatment, with the two smoke taint amelioration treatments exhibiting lower mean values for volatile aroma compounds exhibiting positive ‘fruit’ aromas. Furthermore, a low-cost electronic nose (e-nose) was used to assess the wines. A machine learning model based on artificial neural networks (ANN) was developed using the e-nose outputs from the unsmoked control wine, unsmoked wine with activated carbon treatment, unsmoked wine with a cleaving enzyme plus activated carbon treatment, and smoke-tainted control wine samples as inputs to classify the wines according to the smoke taint amelioration treatment. The model displayed a high overall accuracy of 98% in classifying the e-nose readings, illustrating it may be a rapid, cost-effective tool for winemakers to assess the effectiveness of smoke taint amelioration treatment by activated carbon with/without the use of a cleaving enzyme. Furthermore, the use of a cleaving enzyme coupled with activated carbon was found to be effective in ameliorating smoke taint in wine and may help delay the resurgence of smoke aromas in wine following the aging and hydrolysis of glycoconjugates.

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3