Detection of smoke-derived compounds from bushfires in Cabernet-Sauvignon grapes, must, and wine using Near-Infrared spectroscopy and machine learning algorithms

Author:

Summerson Vasiliki,Gonzalez Viejo Claudia,Torrico Damir D.,Pang Alexis,Fuentes Sigfredo

Abstract

The number and intensity of wildfires are increasing worldwide, thereby raising the risk of smoke contamination of grapevine berries and the development of smoke taint in wine. This study aimed to develop five artificial neural network (ANN) models from berry, must, and wine samples obtained from grapevines exposed to different levels of smoke: (i) Control (C), i.e., no misting or smoke exposure; (ii) Control with misting (CM), i.e., in-canopy misting, but no smoke exposure; (iii) low-density smoke treatment (LS); (iv) high-density smoke treatment (HS) and (v) a high-density smoke treatment with misting (HSM). Models 1, 2, and 3 were developed using the absorbance values of near-infrared (NIR) berry spectra taken one day after smoke exposure to predict levels of 10 volatile phenols (VP) and 18 glycoconjugates in grapes at either one day after smoke exposure (Model 1: R = 0.98; R2 = 0.97; b = 1) or at harvest (Model 2: R = 0.98; R2 = 0.97; b = 0.97), as well as six VP and 17 glycoconjugates in the final wine (Model 3: R = 0.98; R2 = 0.95; b = 0.99). Models 4 and 5 were developed to predict the levels of six VP and 17 glycoconjugates in wine. Model 4 used must NIR absorbance spectra as inputs (R = 0.99; R2 = 0.99; b = 1.00), while Model 5 used wine NIR absorbance spectra (R = 0.99; R2 = 0.97; b = 0.97). All five models displayed high accuracies and could be used by grape growers and winemakers to non-destructively assess at near real-time the levels of smoke-related compounds in grapes and/or wine in order to make timely decisions about grape harvest and smoke taint mitigation techniques in the winemaking process.

Publisher

Universite de Bordeaux

Subject

Horticulture,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3