Bioconversion of Carrot Pomace to Value-Added Products: Rhizopus delemar Fungal Biomass and Cellulose

Author:

Mousavi S. Najmeh1ORCID,Parchami Mohsen1ORCID,Ramamoorthy Sunil Kumar1ORCID,Soufiani Amir Mahboubi1ORCID,Hakkarainen Minna2ORCID,Zamani Akram1ORCID

Affiliation:

1. Swedish Center for Resource Recovery, University of Borås, 501 90 Borås, Sweden

2. Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden

Abstract

Carrot pomace (CP) which is generated in a large volume in the juice production process, is rich in cellulose, hemicellulose, sugars, pectin, and minerals. However, in many previous investigations, only cellulose was purified and utilized while other components of CP were discarded as waste. Here, CP was valorized into fungal biomass and cellulose with the aim of utilizing all the CP components. Enzymatic pretreatments were applied to solubilize the digestible fraction of CP including hemicellulose, pectin, sucrose, and other sugars for fungal cultivation, while cellulose remained intact in the solid fraction. The dissolved fraction was utilized as a substrate for the cultivation of an edible fungus (Rhizopus delemar). Fungal cultivation was performed in shake flasks and bench-scale bioreactors. The highest fungal biomass concentration was obtained after pretreatment with invertase (5.01 g/L) after 72 h of cultivation (36 and 42% higher than the concentrations obtained after hemicellulase and pectinase treatments, respectively). Invertase pretreatment resulted in the hydrolysis of sucrose, which could then be taken up by the fungus. Carbohydrate analysis showed 28–33% glucan, 4.1–4.9% other polysaccharides, 0.01% lignin, and 2.7–7% ash in the CP residues after enzymatic pretreatment. Fourier transform infrared spectroscopy and thermogravimetric analysis also confirmed the presence of cellulose in this fraction. The obtained fungal biomass has a high potential for food or feed applications, or as a raw material for the development of biomaterials. Cellulose could be purified from the solid fraction and used for applications such as biobased-textiles or membranes for wastewater treatment, where pure cellulose is needed.

Funder

ÅForsk Foundation

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3