The Effect of Dietary Fermented Grape Pomace Supplementation on In Vitro Total Gas and Methane Production, Digestibility, and Rumen Fermentation

Author:

Kara Kanber1ORCID,Öztaş Mehmet Akif2

Affiliation:

1. Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Erciyes University, 38280 Kayseri, Turkey

2. Department of Animal Nutrition and Nutritional Diseases, Health Sciences Institute, Erciyes University, 38280 Kayseri, Turkey

Abstract

The aim of this study comprises the effect of fermented grape pomace (FGP) in experimental total mixed rations (TMR) at different rates (0, 7.5%, 15%, and 22.5%) on the in vitro cumulative gas production (6th, 12th, 18th and 24th hours), methane production, ruminal fermentation values, pH and ammonia-nitrogen and straight and branched short-chain fatty acids (SCFA and BCFA) concentration. The method of in vitro total gas production was carried out in glass syringes. Ruminal in vitro methane production linearly decreased by adding up to 22.5% FGP in experimental TMR (p < 0.05). The molarities of acetic, propionic, butyric, and valeric acids in the in vitro fermentation fluid linearly decreased with the addition of FGP to TMR (p < 0.05). FGP up to 22.5% in experimental TMRs decreased the molarity of iso-valeric acid and iso-butyric acid from BSCFAs (p < 0.05). As a result, it was concluded that the use of FGP, containing a low level of total condensed tannins (TCTs), up to 22.5% in the experimental TMR based on dry matter (DM) did not adversely affect the in vitro ruminal fermentation value and had an anti-methanogenic effect. In addition, some SCFA (acetic, propionic, butyric, and valeric acids) molarities and iso-acid BSCFA (iso-butyric and iso-valeric acid) did not change up to 15% rate of FGP in the ration. Still, these values decreased by using a 22% rate of FGP. The dose-dependent effect of FGP on ruminal iso-acids has been associated with the ability of TCTs to inhibit ruminal protein degradation partially.

Funder

The Research Fund of Erciyes University

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3