Afforestation Influences Soil Aggregate Stability by Regulating Aggregate Transformation in Karst Rocky Desertification Areas

Author:

Zhu Dayun12,Yang Qian12,Zhao Yingshan12,Cao Zhen12,Han Yurong12,Li Ronghan12,Ni Ju12,Wu Zhigao12

Affiliation:

1. School of Karst Science, Guizhou Normal University, Guiyang 550001, China

2. State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, China

Abstract

Surface vegetation has a substantial impact on soil aggregate stability, which is an important indicator of soil quality. However, there is still limited research on the response of soil aggregate stability indicators and the organic carbon, total nitrogen, and total phosphorus content in soil aggregates for different vegetation patterns in rocky desertification fragile ecological areas. Therefore, in order to study the effects of different vegetation restoration models on soil aggregate stability and aggregate related nutrient content and their promoting relationships in the karst rocky desertification areas in southwest China, soil samples under three artificial restoration vegetation measures (Juglans regia L.-Rosa roxburghii Tratt., Rosa roxburghii Tratt.-Lolium perenne L., Juglans regia L.-Lolium perenne L.) were collected in 0–10 cm and 10–20 cm soil, and the traditional farmland (Zea mays L.) was used as the control, combined with dry and wet sieving experiments for the research and analysis. The results showed that there were significant differences in the distribution of aggregates and soil nutrients among the four types of plots. Compared with traditional agricultural land, artificial afforestation increased the content of soil large macroaggregates (LMAs) and decreased the proportion of microaggregates (MIAs) and silt+clay (SCA), which enhanced the soil aggregate stability and reduced the soil fragmentation and erodibility. The afforestation restoration increased the content of soil aggregate-related SOC, TN, and TP, and increased with the decrease in the aggregate particle size. Research has found that soil aggregate stability indicators are significantly influenced by the particle size distribution of soil aggregates. In the positive succession process of vegetation types, soil nutrient accumulation is controlled by changes in the soil aggregate particle size, which affects the soil aggregate stability and reduces soil erodibility, thereby protecting the soil nutrient loss. The composite management of forest and irrigation in degraded ecological areas has certain reference and indicative significance for ecological restoration in rocky desertification areas.

Funder

National Natural Science Foundation of China

Academic Seedling Cultivation and Innovation Exploration

Publisher

MDPI AG

Subject

Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3