Soil degradation: a problem threatening the sustainable development of agriculture in Northeast China

Author:

Liu X.B.,Zhang X.Y.,Wang Y.X.,Sui Y.Y.,Zhang S.L.,Herbert S.J.,Ding G.

Abstract

Soil degradation that results from erosion, losses of organic matter and nutrients, or soil compaction are of great concern in every agricultural region of the world. The control of soil erosion and loss of organic matter has been proposed as critical to agricultural and environmental sustainability of Northeast China. This region is bread basket of China where the fertile and productive soils, Mollisols (also called Black soils), are primarily distributed. In this paper, we introduce the importance of Northeast China’s grain production to China, and describe the changes of sown acreage and grain production in past decades. This paper also summarizes the distribution, area and intensity of water erosion, changes in the number of gullies and gully density, thickness of top soil layer, soil organic matter content, bulk density, field water holding capacity, and infiltration rates; the number of soil microorganism and main enzyme activities from soil erosion in the region are also summarized. The moderately and severely water-eroded area accounted for 31.4% and 7.9% of the total, and annual declining rate is 1.8%. Erosion rate is 1.24–2.41 mm/year, and soil loss in 1°, 5° and 15° sloping farmlands is 3 t/ha/year, 78 t/ha/year and 220.5 t/ha/year, respectively. SOC content of uncultivated soil was nearly twice that of soil with a 50-year cultivation history, and the average annual declining rate of soil organic matter was 0.5%. Proper adoption of crop rotation can increase or maintain the quantity and quality of soil organic matter, and improve soil chemical and physical properties. Proposed strategies for erosion control, in particular how tillage management, terraces and strip cultivation, or soil amendments contribute to maintain or restore the productivity of severely eroded farmland, are discussed in the context of agricultural sustainability with an emphasis on the Chinese Mollisols.

Publisher

Czech Academy of Agricultural Sciences

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3