Monitoring In Vitro Extracellular Matrix Protein Conformations in the Presence of Biomimetic Bone-Regeneration Scaffolds Using Functionalized Gold-Edge-Coated Triangular Silver Nanoparticles

Author:

Rodriguez Barroso Laura G.ORCID,Azaman Farah AlwaniORCID,Pogue Robert,Devine DeclanORCID,Fournet Margaret BrennanORCID

Abstract

In the cellular environment, high noise levels, such as fluctuations in biochemical reactions, protein variability, molecular diffusion, cell-to-cell contact, and pH, can both mediate and interfere with cellular functions. In this work, gold edge-coated triangular silver nanoparticles (AuTSNP) were validated as a promising new tool to indicate protein conformational transitions in cultured cells and to monitor essential protein activity in the presence of an optimized bone biomimetic chitosan-based scaffold whose rational design mimics the ECM as a natural scaffold. A chitosan-based scaffold formulation with hydroxyapatite (CS/HAp) was selected due to its promising features for orthopedic applications, including combined high mechanical strength biocompatibility and biodegradability. Functionalized AuTSNP-based tests with the model ECM protein, fibronectin (Fn), illustrate that the protein interactions can be clearly sensed over time through the local surface plasmon resonance (LSPR) technique. This demonstrates that AuTNSP are a powerful tool to detect protein conformational activity in the presence of biomimetic bone tissue regeneration scaffolds within a cellular environment that comprises a diversity of molecular cues.

Funder

Technological University of the Shannon

President Seed Fund

Higher Education Authority

Higher Education, Research, Innovation, and Science

Fundação de Amparo à Pesquisa do Distrito Federal

Technological University of the Shannon: Midlands Midwest

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference31 articles.

1. Pollock, V. (2007). Proteins. Xpharm Compr. Pharmacol. Ref., 1–11.

2. Introduction to proteomics;Nachimuthu;Concepts and Techniques in Genomics and Proteomics,2007

3. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (2002). Molecular Biology of the Cell, Garland Science. [4th ed.].

4. Protein Conformational Changes Are Detected and Resolved Site Specifically by Second-Harmonic Generation;Moree;Biophys. J.,2015

5. Silver Nanoplates for Highly Sensitive Plasmon Resonance Sensing;Charles;ACS Nano,2010

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3