Recent Advances in Theoretical Development of Thermal Atomic Layer Deposition: A Review

Author:

Shahmohammadi Mina,Mukherjee Rajib,Sukotjo CortinoORCID,Diwekar Urmila M.ORCID,Takoudis Christos G.

Abstract

Atomic layer deposition (ALD) is a vapor-phase deposition technique that has attracted increasing attention from both experimentalists and theoreticians in the last few decades. ALD is well-known to produce conformal, uniform, and pinhole-free thin films across the surface of substrates. Due to these advantages, ALD has found many engineering and biomedical applications. However, drawbacks of ALD should be considered. For example, the reaction mechanisms cannot be thoroughly understood through experiments. Moreover, ALD conditions such as materials, pulse and purge durations, and temperature should be optimized for every experiment. It is practically impossible to perform many experiments to find materials and deposition conditions that achieve a thin film with desired applications. Additionally, only existing materials can be tested experimentally, which are often expensive and hazardous, and their use should be minimized. To overcome ALD limitations, theoretical methods are beneficial and essential complements to experimental data. Recently, theoretical approaches have been reported to model, predict, and optimize different ALD aspects, such as materials, mechanisms, and deposition characteristics. Those methods can be validated using a different theoretical approach or a few knowledge-based experiments. This review focuses on recent computational advances in thermal ALD and discusses how theoretical methods can make experiments more efficient.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3