Vibration Characteristics Analysis of Moderately Thick Laminated Composite Plates with Arbitrary Boundary Conditions

Author:

Xue Zechang,Li Qiuhong,Huang Wenhao,Guo Yongxin,Wang Jiufa

Abstract

In this study, an improved Fourier series method is presented for the vibration modeling and analysis of moderately thick laminated composite plates with arbitrary boundary conditions, in which the vibration displacements are sought as the linear combination of a double Fourier cosine series and auxiliary series functions. The vibration model was established using the Hamilton energy principle. To study the vibration characteristics of laminated composite plates more comprehensively, firstly, the accuracy of the current results were validated via comparison with previous results and finite element method data. A parametric study was conducted on the effects of several key parameters, such as the h/b ratio, orientation and number of layers. In this section, both solutions are applicable to various combinations of boundary constraints, including classical boundary conditions and elastic-supported boundary conditions. Secondly, in order to identify the action position of vibration and the transmission of vibration energy, the response analysis of laminated plates was studied, and the power flow field for laminated plates was analyzed. Finally, a modal test was introduced to further verify the accuracy of the method in this paper.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3