Dynamic Modeling and Analysis of Boundary Effects in Vibration Modes of Rectangular Plates with Periodic Boundary Constraints Based on the Variational Principle of Mixed Variables

Author:

Shi Yuanyuan1,Huang Qibai1,Peng Jiangying1

Affiliation:

1. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

The modal and vibration-noise response characteristics of plate structures are closely related to their boundary effects, and the analytical modeling and solution of the dynamics of plate structures with complex boundary conditions can reveal mechanisms of the influence of the boundary structure parameters on the modal characteristics. This paper proposes a new method for dynamic modeling of rectangular plates with periodic boundary conditions based on the energy equivalence principle (mixed-variable variational principle) of equating complex boundary “geometric constraints” to “mathematical physical constraints”, taking a rectangular plate structure with periodic boundaries commonly used in engineering as the object. First, the boundary external potential energy of the periodic boundary rectangular plate is obtained by equating the bending moment and deflection to the boundary conditions. Next, we establish the total potential energy model, the amplitude boundary equation, as well as the frequency equation of the periodic boundary rectangular plate in turn. Solving by numerical method, the natural frequency of the theoretical model is obtained. The validity of the theoretical model is then verified by modal test experiments. Finally, the law of the parameters such as the form of boundary constraint, the number of periods, and the clamp support ratio on the natural frequency of the rectangular plate is investigated. The results show that the natural frequency of the rectangular plate is closely related to the boundary form and period distribution of the plate. The modal frequencies of the plate structure can be tuned by the design of the boundary conditions for a certain size of the plate structure. The research in this paper provides a theoretical and technical basis for the vibration noise control of complex boundary plate structures.

Funder

the Guangxi Science and Technology Major Special Project

the Liuzhou Science and Technology Planning Project under Grant

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3