The Application of a Convolutional Neural Network for the Detection of Contrails in Satellite Imagery

Author:

Hoffman Jay P.1ORCID,Rahmes Timothy F.2,Wimmers Anthony J.1,Feltz Wayne F.1

Affiliation:

1. Space Science and Engineering Center (SSEC), University of Wisconsin-Madison, Madison, WI 53706, USA

2. The Boeing Company, Seattle, WA 98124, USA

Abstract

This study presents a novel approach for the detection of contrails in satellite imagery using a convolutional neural network (CNN). Contrails are important to monitor because their contribution to climate change is uncertain and complex. Contrails are found to have a net warming effect because the clouds prevent terrestrial (longwave) radiation from escaping the atmosphere. Globally, this warming effect is greater than the cooling effect the clouds have in the reduction of solar (shortwave) radiation reaching the surface during the daytime. The detection of contrails in satellite imagery is challenging due to their similarity to natural clouds. In this study, a certain type of CNN, U-Net, is used to perform image segmentation in satellite imagery to detect contrails. U-Net can accurately detect contrails with an overall probability of detection of 0.51, a false alarm ratio of 0.46 and a F1 score of 0.52. These results demonstrate the effectiveness of using a U-Net for the detection of contrails in satellite imagery and could be applied to large-scale monitoring of contrail formation to measure their impact on climate change.

Funder

Boeing and Space Science and Engineering Center

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3