Transfer Learning with ResNet3D-101 for Global Prediction of High Aerosol Concentrations

Author:

Nikezić Dušan P.1ORCID,Radivojević Dušan S.1ORCID,Lazović Ivan M.1ORCID,Mirkov Nikola S.1ORCID,Marković Zoran J.1ORCID

Affiliation:

1. Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia

Abstract

In order to better predict the high aerosol concentrations associated with air pollution and climate change, a machine learning model was developed using transfer learning and the segmentation process of global satellite images. The main concept of transfer learning lies on convolutional neural networks and works by initializing the already trained model weights to better adapt the weights when the network is trained on a different dataset. The transfer learning technique was tested with the ResNet3D-101 model pre-trained from a 2D ImageNet dataset. This model has performed well for contrail detection to assess climate impact. Aerosol distributions can be monitored via satellite remote sensing. Satellites can monitor some aerosol optical properties like aerosol optical thickness. Aerosol optical thickness snapshots were the input dataset for the model and were obtained from NASA’s Terra-Modis satellite; the output images were segmented by comparing the pixel values with a threshold value of 0.8 for aerosol optical thickness. Hyperparameter optimization finds a tuple of hyperparameters that yields an optimal model that minimizes a predefined loss function on given independent data. The model structure was adjusted in order to improve the performance of the model by applying methods and hyperparameter optimization techniques such as grid search, batch size, threshold, and input length. According to the criteria defined by the authors, the distance domain criterion and time domain criterion, the developed model is capable of generating adequate data and finding patterns in the time domain. As observed from the comparison of relative coefficients for the criteria metrics proposed by the authors, ddc and dtc, the deep learning model based on ConvLSTM layers developed in our previous studies has better performance than the model developed in this study with transfer learning.

Funder

University of Belgrade, Vinča Institute of Nuclear Sciences

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3