Abstract
Climate-impacting contrails need ice (super-)saturation to persist longer than a few minutes. However, this simple criterion cannot be easily applied for the prediction of persistent contrails. The current weather forecast models, which lack humidity data for assimilation in the upper troposphere, have difficulties coping with the enormous variability and sharp gradients in the relative humidity field. Thus, ice supersaturation, which is an extremal state of relative humidity, is hard to forecast at a precise location and time to allow contrail-avoiding flight routing. In this paper, we investigate the possibility of using dynamical proxy variables for improved contrail prediction. This idea is guided by the fact that the probability of ice supersaturation differs in different dynamical regimes. Therefore, we determine probability distributions of temperature, water vapour concentration, vertical velocity, divergence, relative and potential vorticity, geopotential height, and lapse rate conditioned on three situations: (a) contrail persistence not possible; (b) contrail persistence possible; and (c) strongly warming persistent contrails possible. While the atmospheric variables are taken from reanalysis data, the conditions (a–c) are based on airborne measurement data and radiation quantities from the reanalysis. It turns out that the vorticity variables, and in particular geopotential and lapse rate, show quite distinct conditional probabilities, suggesting a possibility to base an improved forecast of persistent contrails not only on the traditional quantities of temperature and relative humidity, but on these dynamical proxies as well. Furthermore, we show the existence of long flight tracks with the formation of strongly warming contrails, which are probably embedded in larger ice-supersaturated regions with conditions that foster such contrails. For forecasting purposes, this is a beneficial property since the humidity forecast is easier on large, rather than small, spatial scales.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献