Nanomaterial Production from Metallic Vapor Bubble Collapse in Liquid Nitrogen

Author:

Li Chen1ORCID,Han Ruoyu12ORCID,Li Jingran2,Cao Yuchen2,Yuan Wei2,Li Qifan3ORCID

Affiliation:

1. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China

2. State Key Laboratory of Mechatronics Engineering and Control, Beijing Institute of Technology, Beijing 100081, China

3. School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China

Abstract

Nanomaterials with unique structural and properties can be synthesized by rapid transition of the thermodynamic state. One promising method is through electrical explosion, which possesses ultrafast heating/quenching rates (dT/dt~109 K/s) of the exploding conductor. In this study, experiments were performed with fine metallic wire exploding in liquid nitrogen (liq N2, 77 K) under different applied voltages. For the first time in the literature, the physical image of the electrical explosion dynamics in liq N2 is depicted using electro-physical diagnostics and spatial-temporal-resolved photography. Specifically, the pulsation and collapse processes of the vapor bubble (explosion products) have been carefully observed and analyzed. As a comparison, an underwater electrical explosion was also performed. The experimental results suggest that the vapor bubble behavior in liq N2 differs from that in water, especially in the collapse phase, characterized by secondary small-scale bubbles in liq N2, but multiple bubble pulses in water; correspondingly, the products’ characteristics are discrepant.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing

State Key Laboratory of Laser Interaction with Matter

State Key Laboratory of Explosion Science and Technology

Young Elite Scientists Sponsorship Program by CAST

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3