The Potential of Wire Explosion in Nanoparticle Production in Terms of Reproducibility

Author:

Égerházi László1ORCID,Szörényi Tamás2ORCID

Affiliation:

1. Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary

2. Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Hungary

Abstract

Aquasols produced by exploding copper wires represent complex systems in which identifying individual colloidal components poses challenges due to broad and multimodal size distributions and varying shares among oxidation states. To evaluate the reproducibility of copper wire explosion, the size distribution of metallic and oxidized colloidal components within the 10–300 nm diameter range was assessed. Classification of each individual particle into bins according to size and chemical composition was accomplished by reconstructing the recorded optical extinction spectra of three sols produced under identical conditions as the weighted sum of the extinction spectra of individual copper and copper-oxide particles, computed using Mie theory. Our spectrophotometry-based component analysis revealed differences in particle number concentrations of the mainly oxidized nanoparticles, corresponding to deviations observed in the ultraviolet portion of the extinction spectra. Notable uniformity was observed, however, in the number of metallic fine particles, consistent with agreement in spectral features in the visible range. Regarding mass concentration, practically no differences were observed among the three samples, with nano-to-fine ratios of copper particles agreeing within 0.45%. Despite the complex processes during explosion leading to limited reproducibility in the ratio of different copper oxidation states, very good reproducibility (54.2 ± 0.7%) was found when comparing the total copper content of the samples to the mass of the exploded copper wire.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3