Graphite and Bismuth Selenide under Electrical Explosion in Confined Environment: Exfoliation, Phase Transition, and Surface Decoration

Author:

Han Ruoyu1ORCID,Li Chen2ORCID,Gao Ming3ORCID,Cao Yuchen2,Yuan Wei2,Huang Yifan3

Affiliation:

1. State Key Laboratory of Mechatronics Engineering and Control Beijing Institute of Technology Beijing 100081 China

2. School of Physics Beijing Institute of Technology Beijing 100081 China

3. Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China

Abstract

AbstractElectrical explosion, characterized by ultrafast atomization and quenching rate (dT/dt ≈ 1010–1012 K s–1) of the sample, is a unique approach for “one‐step” synthesis of nanomaterials. Experiments are carried out with layered graphite and Bi2Se3 under the action of electrical explosion in a confined reaction tube. High‐speed photography and electrophysical diagnostics are applied to characterize dynamic processes. SEM and EDS are used to characterize surface micro‐morphology of reaction products. The layered materials are first exfoliated to thin nanosheets/nanocrystals by shock waves and turbulent flow of the explosion. As the ionized explosion products (>10 000 K) contacts the sample, intense heat transfer happens, simultaneously atomizing the sample and quenching the plasmas. As a result, nanoparticles grow on the surface of thin sheets, forming “dot‐sheet” structure. The size distribution of the nanoparticles typically ranges from 10 to 100 nm, following Log‐normal distribution. The dotted graphite nanosheets gather together and form a stacked/cabbage‐like structure. By contrast, Bi2Se3 case accompanies with chemical reactions, causing surface corrosion and showing more possibilities: nanocrystals and nanotubes growth on different areas of the sample.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

State Key Laboratory of Laser Interaction with Matter

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3