Single-Step Synthesis of Nanocrystalline Fe-Ni/Fe-Co-Ni Magnetic Alloy Coating via Directional Plasma Spray

Author:

Shi Bo1ORCID,Li Chen2ORCID,Han Ruoyu1ORCID,Li Qifan3ORCID,Li Pengfei1ORCID,Chen Xi1ORCID

Affiliation:

1. State Key Laboratory of Mechatronics Engineering and Control, Beijing Institute of Technology, Beijing 100081, China

2. School of Physics, Beijing Institute of Technology, Beijing 100081, China

3. School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China

Abstract

Fe-Ni-based nanocrystalline coatings with unique magnetic properties are widely used as soft magnetic materials and usually act as the core component in electronic devices. Nanocrystallized particles and thin films have become a popular contemporary research direction. Electrical explosion, characterized by an ultrafast atomization and quenching rate (dT/dt ~ 109–1011 K/s) for the material, is a unique approach for the rapid “single-step” synthesis of nanomaterials and coatings. In this study, experiments were carried out with intertwined wire under a directional spraying device in atmospheric Ar ambience. Two load systems of Fe-Ni and Fe-Ni-Co were considered in this work. Electrical parameters and high-speed camera images were obtained to reveal the physical mechanism and dynamic process of explosive spraying. The morphologic and crystallographic results were characterized by SEM and XRD. The magnetic properties were measured via VSM equipment, and the parameters of saturation magnetization Ms, residual magnetization Mr, and coercivity Hc were emphasized in the hysteresis loop pattern. The experimental results indicate that a dense coating was prepared with extremely low porosity, and the morphology of the coating surface shows different regions characterized by solidified chunks and loose particles. XRD patterns showed that crystalline structures were discrepant under two load systems with different Ni weight proportions. Magnetic measurements gave a thin and narrow hysteresis loop, which represents loops with good soft magnetic properties. Quantitatively, coercivity Hc decreased from 59.3 to 52.6 and from 121.0 to 49.9 for the coatings not containing and containing Co under parallel and perpendicular fields, respectively.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

State Key Laboratory of Laser Interaction with Matter

State Key Laboratory of Intense Pulsed Radiation Simulation and Effect

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3