Classroom Behavior Detection Based on Improved YOLOv5 Algorithm Combining Multi-Scale Feature Fusion and Attention Mechanism

Author:

Tang Longyu,Xie Tao,Yang Yunong,Wang Hong

Abstract

The detection of students’ behaviors in classroom can provide a guideline for assessing the effectiveness of classroom teaching. This study proposes a classroom behavior detection algorithm using an improved object detection model (i.e., YOLOv5). First, the feature pyramid structure (FPN+PAN) in the neck network of the original YOLOv5 model is combined with a weighted bidirectional feature pyramid network (BiFPN). They are subsequently processed with feature fusion of different scales of the object to mine the fine-grained features of different behaviors. Second, a spatial and channel convolutional attention mechanism (CBAM) is added between the neck network and the prediction network to make the model focus on the object information to improve the detection accuracy. Finally, the original non-maximum suppression is improved using the distance-based intersection ratio (DIoU) to improve the discrimination of occluded objects. A series of experiments were conducted on our new established dataset which includes four types of behaviors: listening, looking down, lying down, and standing. The results demonstrated that the algorithm proposed in this study can accurately detect various student behaviors, and the accuracy was higher than that of the YOLOv5 model. By comparing the effects of student behavior detection in different scenarios, the improved algorithm had an average accuracy of 89.8% and a recall of 90.4%, both of which were better than the compared detection algorithms.

Funder

Research and practice of mobile academic management platform based on ubiquitous learning

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference40 articles.

1. A research framework of smart education

2. The Instructional Process: A Review of Flanders’ Interaction Analysis in a Classroom Setting

3. Reducing the Dimensionality of Data with Neural Networks

4. Very deep convolutional networks for large-scale image recognition;Simonyan;arXiv,2014

5. Going deeper with convolutions;Szegedy;Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3