The Induction of the Isoflavone Biosynthesis Pathway Is Associated with Resistance to Common Bacterial Blight in Phaseolus vulgaris L.

Author:

Cox Laura D.,Munholland Seth,Mats Lili,Zhu Honghui,Crosby William L.,Lukens Lewis,Pauls Karl Peter,Bozzo Gale G.ORCID

Abstract

Xanthomonas axonopodis infects common bean (Phaseolus vulgaris L.) causing the disease common bacterial blight (CBB). The aim of this study was to investigate the molecular and metabolic mechanisms underlying CBB resistance in P. vulgaris. Trifoliate leaves of plants of a CBB-resistant P. vulgaris recombinant inbred line (RIL) and a CBB-susceptible RIL were inoculated with X. axonopodis or water (mock treatment). Leaves sampled at defined intervals over a 48-h post-inoculation (PI) period were monitored for alterations in global transcript profiles. A total of 800 genes were differentially expressed between pathogen and mock treatments across both RILs; approximately half were differentially expressed in the CBB-resistant RIL at 48 h PI. Notably, there was a 4- to 32-fold increased transcript abundance for isoflavone biosynthesis genes, including several isoflavone synthases, isoflavone 2′-hydroxylases and isoflavone reductases. Ultra-high performance liquid chromatography-tandem mass spectrometry assessed leaf metabolite levels as a function of the PI period. The concentrations of the isoflavones daidzein and genistein and related metabolites coumestrol and phaseollinisoflavan were increased in CBB-resistant RIL plant leaves after exposure to the pathogen. Isoflavone pathway transcripts and metabolite profiles were unaffected in the CBB-susceptible RIL. Thus, induction of the isoflavone pathway is associated with CBB-resistance in P. vulgaris.

Funder

Natural Sciences and Engineering Research Council of Canada

Ontario Ministry of Research and Innovation

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Reference71 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3