Reconstruction of a Genome-Scale Metabolic Model of Streptomyces albus J1074: Improved Engineering Strategies in Natural Product Synthesis

Author:

Kittikunapong CheewinORCID,Ye Suhui,Magadán-Corpas PatriciaORCID,Pérez-Valero ÁlvaroORCID,Villar Claudio J.,Lombó FelipeORCID,Kerkhoven Eduard J.ORCID

Abstract

Streptomyces albus J1074 is recognized as an effective host for heterologous production of natural products. Its fast growth and efficient genetic toolbox due to a naturally minimized genome have contributed towards its advantage in expressing biosynthetic pathways for a diverse repertoire of products such as antibiotics and flavonoids. In order to develop precise model-driven engineering strategies for de novo production of natural products, a genome-scale metabolic model (GEM) was reconstructed for the microorganism based on protein homology to model species Streptomyces coelicolor while drawing annotated data from databases and literature for further curation. To demonstrate its capabilities, the Salb-GEM was used to predict overexpression targets for desirable compounds using flux scanning with enforced objective function (FSEOF). Salb-GEM was also utilized to investigate the effect of a minimized genome on metabolic gene essentialities in comparison to another Streptomyces species, S. coelicolor.

Funder

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3