Study on the Influence of Diversity and Quality in Entropy Based Collaborative Clustering

Author:

Sublime JérémieORCID,Cabanes GuénaëlORCID,Matei BasarabORCID

Abstract

The aim of collaborative clustering is to enhance the performances of clustering algorithms by enabling them to work together and exchange their information to tackle difficult data sets. The fundamental concept of collaboration is that clustering algorithms operate locally but collaborate by exchanging information about the local structures found by each algorithm. This kind of collaborative learning can be beneficial to a wide number of tasks including multi-view clustering, clustering of distributed data with privacy constraints, multi-expert clustering and multi-scale analysis. Within this context, the main difficulty of collaborative clustering is to determine how to weight the influence of the different clustering methods with the goal of maximizing the final results and minimizing the risk of negative collaborations—where the results are worse after collaboration than before. In this paper, we study how the quality and diversity of the different collaborators, but also the stability of the partitions can influence the final results. We propose both a theoretical analysis based on mathematical optimization, and a second study based on empirical results. Our findings show that on the one hand, in the absence of a clear criterion to optimize, a low diversity pool of solution with a high stability are the best option to ensure good performances. And on the other hand, if there is a known criterion to maximize, it is best to rely on a higher diversity pool of solution with a high quality on the said criterion. While our approach focuses on entropy based collaborative clustering, we believe that most of our results could be extended to other collaborative algorithms.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference37 articles.

1. SOM variants for topological horizontal collaboration

2. Collaborative fuzzy clustering algorithm: Some refinements

3. Decentralized Collaborative Learning of Personalized Models over Networks;Vanhaesebrouck;AISTATS,2017

4. Collaborative clustering: Why, when, what and how

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3