Unsupervised collaborative learning based on Optimal Transport theory

Author:

Ben-Bouazza Fatima-Ezzahraa1,Bennani Younès2,Cabanes Guénaël3,Touzani Abdelfettah4

Affiliation:

1. Université Sorbonne Paris Nord , LIPN UMR 7030 CNRS , France ; LaMSN, La Maison des Sciences Numériques, USPN , France ; Université Sidi Mohamed Ben Abdellah, LAMA , Fès , Morocco ;

2. Université Sorbonne Paris Nord , LIPN UMR 7030 CNRS , France ; LaMSN, La Maison des Sciences Numériques, USPN , France

3. Université Sorbonne Paris Nord , LIPN UMR 7030 CNRS , France

4. Université Sidi Mohamed Ben Abdellah, LAMA , Fès , Morocco

Abstract

Abstract Collaborative learning has recently achieved very significant results. It still suffers, however, from several issues, including the type of information that needs to be exchanged, the criteria for stopping and how to choose the right collaborators. We aim in this paper to improve the quality of the collaboration and to resolve these issues via a novel approach inspired by Optimal Transport theory. More specifically, the objective function for the exchange of information is based on the Wasserstein distance, with a bidirectional transport of information between collaborators. This formulation allows to learns a stopping criterion and provide a criterion to choose the best collaborators. Extensive experiments are conducted on multiple data-sets to evaluate the proposed approach.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Reference40 articles.

1. Sotiris Kotsiantis and Panayiotis Pintelas. Recent advances in clustering: A brief survey. WSEAS Transactions on Information Science and Applications, 1(1):73–81, 2004.

2. Junjie Wu, Hui Xiong, and Jian Chen. Adapting the right measures for k-means clustering. In SIGKDD, pages 877–886. ACM, 2009.

3. David Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods. In 33rd annual meeting of the association for computational linguistics, 1995.

4. Miin-Shen Yang and Kuo-Lung Wu. Unsupervised possibilistic clustering. Pattern Recognition, 39(1):5–21, 2006.

5. James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and unsupervised discretization of continuous features. In Machine Learning Proceedings 1995, pages 194–202. Elsevier, 1995.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3