Effect of Hydrothermal Carbonization on Fuel and Combustion Properties of Shrimp Shell Waste

Author:

Saha Swarna1,Islam Md Tahmid1,Calhoun Joshua1,Reza Toufiq1ORCID

Affiliation:

1. Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA

Abstract

Shrimp shell is a popularly consumed seafood around the globe which generates a substantial quantity of solid wet waste. Hydrothermal carbonization (HTC) could be a viable pathway to convert wet shrimp shell waste into energy-dense hydrochar. The present study aims to assess the fuel properties, physicochemical attributes, and combustion properties of shrimp shell hydrochar generated with a wide range of HTC temperatures (110–290 °C). Results showed that a rise in carbonization rate results in a decline in mass yield to as low as 25.7% with the increase in HTC temperature. Thermogravimetric analysis indicates shrimp shell hydrochars to be more thermally stable than raw dried feedstock. Results from the bomb calorimeter report a maximum HHV of 27.9 MJ/kg for SS-290, showing a 13% increase in energy densification compared to raw shrimp shell. The slagging and fouling indices determined for the hydrochars further assisted in addressing the concern regarding increasing ash content changing from 17.0% to 36.6%. Lower ratings of the slagging index, fouling index, alkali index, and chlorine content for hydrochars at higher temperature indicate the reduced probability of reactor fouling during combustion. The findings of the analysis demonstrate that HTC is a promising approach for transforming shrimp shell waste into a potential fuel replacement.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference78 articles.

1. FAO (2023, May 07). The State of World Fisheries and Aquaculture. Opportunities and challenges. Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/3/i2727e/i2727e.pdf.

2. Trends in shrimp processing waste utilization: An industrial prospective;Nirmal;Trends Food Sci. Technol.,2020

3. Compositions and yield of lipids extracted from hepatopancreas of Pacific white shrimp (Litopenaeus vannamei) as affected by prior autolysis;Senphan;Food Chem.,2012

4. The Effect of Shrimp Waste Hydrolysate on Broiler’s Tibia Weight, Calcium and Phosphorous Content;Pak. J. Nutr.,2012

5. Sustainable and eco-friendly strategies for shrimp shell valorization;Mathew;Environ. Pollut.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3