Significance and Optimization of Operating Parameters in Hydrothermal Carbonization Using RSM–CCD

Author:

Luthfi Numan1,Fukushima Takashi1,Wang Xiulun1,Takisawa Kenji1

Affiliation:

1. Graduate School of Bioresources, Mie University, Tsu 514-8507, Japan

Abstract

To ascertain the significance of temperature and residence time of hydrothermal carbonization (HTC) in controlling hydrochar production, multiple regression was employed based on central composite design (CCD) to model the responses of mass yield (MY) and higher heating value (HHV). The hydrothermal reaction was explored at temperatures and times ranging from 150 to 250 °C and 0.5 to 3.5 h. Sorghum bagasse (SB) and microalgae (MA) were used to complex the reaction due to their differences in organic constituents. Simultaneously, the operating parameters were optimized by maximizing the response values under domain constraints in the HHV models. The results show that at least temperature and time in the linear system played a significant role in determining the solids recovery and the energy generation of hydrochars (p-values = 0.00), regardless of the biomass type. Moreover, the optimum conditions of SB and MA hydrochars can be achieved by increasing the temperature to the limit of 250 °C and prolonging the time to 3.5 and 3.25 h, respectively. Both respective conditions resulted in maximum HHVs of 27.54 and 35.83 MJ kg−1.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3