Hydrochar production through co-hydrothermal carbonization of water hyacinth and plastic waste

Author:

Ong M Y,Nomanbhay S,Rosman C U A A C,Yusaf T,Silitonga A S

Abstract

Abstract The global expansion of the economy and concerns about greenhouse gas emissions and climate change necessitate the exploration of sustainable alternatives to fossil fuels. Water hyacinth (WH) is globally recognized as one of the most problematic aquatic weeds, posing significant challenges to urban management by clogging waterways, polluting water sources, and causing harm to ecosystems. However, water hyacinth is enriched with hemicellulose, cellulose, and lignin, making it a noteworthy and superior biomass resource. Hence, this study focuses on the hydrothermal carbonization of water hyacinth into a renewable fuel source, the hydrochar. Hydrothermal treatment was implemented in this work as it can treat wet biomass, in this case, the water hyacinth, without the need of energy-extensive drying process. Plastic waste (PW), or more specifically low-density polyethylene (LDPE), was added as the co-feedstock during the HTC process with the purpose to boost the higher heating value (HHV) of the end product. The co-hydrothermal carbonization (co-HTC) process of the mixture of WH and PW at various ratios and temperatures were conducted to investigate the optimal HTC condition for high hydrochar yields. As the result, the highest hydrochar yield of 29.23 wt% was obtained with 12.5% LDPE substitution percentage, at 200 °C after a holding time of 90 min. However, in term of energy recovery efficiency (ER), the highest efficiency (27.28%) was achieved with 12.5% LDPE substitution percentage at 260 °C. The HHV value of the hydrochar produced in this work is in the range of 17.71-24.69 MJ/kg. In summary, the co-HTC of WH and LDPE could definitely be a promising alternative to bridge the gap from solid waste to renewable fuels.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3