Multi-Objective Optimization of Jet Pump Based on RBF Neural Network Model

Author:

Xu Kai,Wang GangORCID,Zhang Luyao,Wang Liquan,Yun Feihong,Sun Wenhao,Wang Xiangyu,Chen Xi

Abstract

In this study, an annular jet pump optimization method is proposed based on an RBF (Radial Basis Function) neural network model and NSGA-II (Non-Dominated Sorting Genetic Algorithm) optimization algorithm to improve the hydraulic performance of the annular jet pump applied in submarine trenching and dredging. Suction angle, diffusion angle, area ratio and flow ratio were selected as design variables. The computational fluid dynamics (CFD) model was used for numerical simulation to obtain the corresponding performance, and an accurate RBF neural network approximate model was established. Finally, the NSGA-II algorithm was selected to carry out multi-objective optimization and obtain the optimal design variable combination. The results show that the determination coefficient R2 of the two objective functions (jet pump efficiency and head ratio) of the approximate model of the RBF neural network were greater than 0.97. Compared with the original model, the optimized model’s suction angle increased, and the diffusion angle, flow ratio and area ratio decreased. In terms of performance, the head ratio increased by 30.46% after the optimization of the jet pump, and efficiency increased slightly. The proposed jet pump performance optimization method provides a reference for improving the performance of other pumps.

Funder

National Key Research and Development Project

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3