Performance Analysis and Rapid Optimization of Vehicle ORC Systems Based on Numerical Simulation and Machine Learning

Author:

Wang Xin1,Chen Xia2,Xing Chengda2,Ping Xu2ORCID,Zhang Hongguang2ORCID,Yang Fubin2ORCID

Affiliation:

1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China

2. Key Laboratory of Enhanced Heat Transfer and Energy Conservation of MOE, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China

Abstract

The organic Rankine cycle (ORC) system is an important technology for recovering energy from the waste heat of internal combustion engines, which is of significant importance for the improvement of fuel utilization. This study analyses the performance of vehicle ORC systems and proposes a rapid optimization method for enhancing vehicle ORC performance. This study constructed a numerical simulation model of an internal combustion engine-ORC waste heat recovery system based on GT-Suite software v2016. The impact of key operating parameters on the performance of two organic Rankine cycles: the simple organic Rankine cycle (SORC) and the recuperative organic Rankine cycle (RORC) was investigated. In order to facilitate real-time prediction and optimization of system performance, a data-driven rapid prediction model of the performance of the waste heat recovery system was constructed based on an artificial neural network. Meanwhile, the NSGA-II multi-objective algorithm was used to investigate the competitive relationship between different performance objective functions. Furthermore, the optimal operating parameters of the system were determined by utilizing the TOPSIS method. The results demonstrate that the highest thermal efficiencies of the SORC and RORC are 6.21% and 8.61%, respectively, the highest power outputs per unit heat transfer area (POPAs) are 6.98 kW/m2 and 8.99 kW/m2, respectively, the lowest unit electricity production costs (EPC) are 7.22 × 10−2 USD/kWh and 3.15 × 10−2 USD/kWh, respectively, and the lowest CO2 emissions are 2.85 ton CO2,eq and 3.11 ton CO2,eq, respectively. The optimization results show that the RORC exhibits superior thermodynamic and economic performance in comparison to the SORC, yet inferior environmental performance.

Funder

Beijing Natural Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3