Experimental and numerical studies of the effect of area ratio and driving pressure on the performance of water and slurry jet pumps

Author:

Meakhail Tarek1,Teaima Ibrahim2

Affiliation:

1. Mechanical Power Engineering Department, Faculty of Energy Engineering, South Valley University, Egypt

2. Mechanical and Electrical Research Institute, National Water Research Center, Egypt

Abstract

The slurry jet pump with scouring nozzle system can be used in dredging of sites, which are difficult to access or need handling of equipments that are used for the intake of pumping stations under bridges and concrete water channels. This system is suitable for sand, silt, sludge, mud, and other organic materials. The aim of this study is to investigate the performance of water and slurry jet pumps. The effects of the pump-operating conditions and geometries on its performance were investigated. The experimental rig was constructed in such a way that the driving nozzle diameter can be changed. In this study, three different diameters of driving nozzles, 10, 12.7, and 16 mm, have been used with one mixing chamber of 25.4 mm diameter (i.e. three different area ratios of R = 0.155, 0.25, and 0.4). Also, the effect of driving pressure has been investigated. The results show that increasing the area ratio decreases the maximum mass flow ratio. The results of computational fluid dynamics were found to agree well with actual values obtained from the experimental water and slurry jet pump.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Reference19 articles.

1. A new prescription for the design of supersonic jet-pumps: the constant rate of momentum change method

2. Govatos GC. The slurry jet pump. Journal of Pipelines. Amsterdam: Elsevier scientific Publishing Company, 1981, pp. 145–157.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3