Abstract
Sugar transporters play important or even indispensable roles in sugar translocation among adjacent cells in the plant. They are mainly composed of sucrose–proton symporter SUT family members and SWEET family members. In rice, 5 and 21 members are identified in these transporter families, and some of their physiological functions have been characterized on the basis of gene knockout or knockdown strategies. Existing evidence shows that most SUT members play indispensable roles, while many SWEET members are seemingly not so critical in plant growth and development regarding whether their mutants display an aberrant phenotype or not. Generally, the expressions of SUT and SWEET genes focus on the leaf, stem, and grain that represent the source, transport, and sink organs where carbohydrate production, allocation, and storage take place. Rice SUT and SWEET also play roles in both biotic and abiotic stress responses in addition to plant growth and development. At present, these sugar transporter gene regulation mechanisms are largely unclear. In this review, we compare the expressional profiles of these sugar transporter genes on the basis of chip data and elaborate their research advances. Some suggestions concerning future investigation are also proposed.
Funder
Open Research Fund of State Key Laboratory of Hybrid Rice, Wuhan University
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献