Genome-wide identification and characterization of the sucrose invertase gene family in Hemerocallis citrina

Author:

Ma Guangying,Zuo Ziwei,Xie Lupeng,Han Jiao

Abstract

Background Sucrose invertase is an important catalytic enzyme that is widely distributed in plants and can irreversibly hydrolyze sucrose into fructose and glucose. Daylily is an important perennial flower worldwide and a traditional vegetable in East Asia. Previous studies have suggested that sucrose invertase is involved in the aging of daylily flowers. However, knowledge about the number, physicochemical properties, and expression patterns of daylily sucrose invertases is still lacking. Identifying the daylily sucrose invertase family genes in the genome is highly important for understanding phylogenetic evolution and determining the genetic function of sucrose invertase. Methods To obtain basic knowledge about the number, classification, sequence composition, and physicochemical properties of sucrose invertases in daylily, bioinformatics software was used to analyze the genome of Hemerocallis citrina (H. citrina), and the basic properties of sucrose invertase genes and proteins were obtained. Then, combined with transcriptome data from flower organs at different developmental stages, the expression patterns of each gene were clarified. Finally, the reliability of the transcriptome data was verified by quantitative real-time polymerase chain reaction (PCR). Results Through software analysis, 35 sucrose invertases were identified from the H. citrina genome and named HcINV1-HcINV35; these enzymes belong to three subfamilies: cell wall invertases, vacuolar invertases, and chloroplast invertases. The amino acid composition, motif types, promoter composition, gene structure, protein physicochemical properties, gene chromosomal localization, and evolutionary adaptability of daylily invertases were determined; these results provided a comprehensive understanding of daylily invertases. The transcriptome expression profile combined with fluorescence quantitative reverse transcription-polymerase chain reaction (RT‒PCR) analysis suggested that almost all daylily invertase genes were expressed in flower organs, but even genes belonging to the same subfamily did not exhibit the same expression pattern at different developmental stages, suggesting that there may be redundancy or dissimilation in the function of daylily sucrose invertases.

Funder

Zhejiang Provincial Natural Science Foundation

Hangzhou Xiaoshan District Science and Technology Bureau Project

Publisher

PeerJ

Reference69 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3