Genome-Wide Identification and Expression Analysis of Sucrose Transporter Gene Family in Wheat Lines under Heat Stress

Author:

Hou Qiling1,Gao Jiangang1,Qin Zhilie1,Sun Hui1,Wang Hanxia1,Yuan Shaohua1,Zhang Fengting1,Yang Weibing1ORCID

Affiliation:

1. Institute of Hybrid Wheat, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China

Abstract

Sucrose transporters (SUTs) play vital roles in phloem sucrose unloading and transportation in wheat grains. However, the genomic information regarding the SUT gene family and their expression patterns in response to heat stress in grains of male-sterile wheat (Triticum aestivum L.) lines has not been systematically studied. In this study, a thorough examination of the wheat SUT gene family was conducted, focusing on their expression patterns in male-sterile lines under heat stress conditions in grain tissues. A total of 19 SUT genes were identified, with phylogenetic analysis indicating their classification into five distinct groups. Polyploidization was identified as a substantial factor in the expansion of SUT genes, with segmental duplication being the predominant mechanism driving the evolutionary expansion of the SUT gene family in wheat. Transcriptome data indicate that the expression levels of TaSUT1 and TaSUT2 were higher than other SUT genes in grains of male-sterile lines. The TaSUT1 expression showed a gradual decreasing trend, while TaSUT2 showed a reverse trend with the process of grain filling. After heat stress, the TaSUT1 expression in grains of male-sterile lines was first significantly increased and then significantly decreased with the filling stage extension, aligning with the observed trend of sucrose levels, indicating that heat stress may decrease the grain weight by reducing sucrose unloading and transportation process in grains. These results provide a systematic analysis of the SUT gene family and lay a theoretical foundation for us to study the grain filling of male-sterile lines in response to abiotic stress.

Funder

Beijing Natural Science Foundation

the Youth Fund Project from Beijing Academy of Agriculture and Forestry Sciences

Modern agricultural industry technology system Construction

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3