Three-Dimensional Prescribed Performance Tracking Control of UUV via PMPC and RBFNN-FTTSMC

Author:

Li Jiawei1ORCID,Xia Yingkai1ORCID,Xu Gen1,He Zixuan1,Xu Kan2,Xu Guohua3

Affiliation:

1. College of Engineering, Huazhong Agricultural University, Wuhan 430070, China

2. Wuhan Second Ship Design and Research Institute, Wuhan 430205, China

3. School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

To address the search-and-docking problem in multi-stage prescribed performance switching (MPPS) scenarios, this paper presents a novel compound control method for three-dimensional (3D) underwater trajectory tracking control of unmanned underwater vehicles (UUVs) subjected to unknown disturbances. The proposed control framework can be divided into two parts: kinematics control and dynamics control. In the kinematics control loop, a novel parallel model predictive control (PMPC) law is proposed, which is composed of a soft-constrained model predictive controller (SMPC) and hard-constrained model predictive controller (HMPC), and utilizes a weight allocator to enable switching between soft and hard constraints based on task goals, thus achieving global optimal control in MPPS scenarios. In the dynamics control loop, a finite-time terminal sliding mode control (FTTSMC) method combining a finite-time radial basis function neural network adaptive disturbance observer (RBFNN-FTTSMC) is proposed to achieve disturbance estimation and fast convergence of velocity tracking errors. The simulation results demonstrate that the proposed PMPC-FTTSMC approach achieved an average improvement of 33% and 80% in the number of iterations compared with MPC with sliding mode control (MPC-SMC) and traditional MPC methods, respectively. Furthermore, the approach improved the speed of response by 35% and 44%, respectively, while accurately achieving disturbance observation and enhancing the system robustness.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3