Optimization of Trajectory Generation and Tracking Control Method for Autonomous Underwater Docking

Author:

Ni Tian1ORCID,Sima Can1,Li Shaobin2,Zhang Lindan1,Wu Haibo1,Guo Jia1

Affiliation:

1. China Ship Scientific Research Centre, Wuxi 214000, China

2. School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China

Abstract

This study proposes a receding horizon optimization-based docking control method to address the autonomy and safety challenge of underwater docking between manned submersibles and unmanned vehicles, facilitating the integration of docking trajectory generation and tracking control. A novel approach for optimizing and generating reference trajectory is proposed to construct a docking corridor that satisfies safe collision-free and visual guidance effective regions. It generates dynamically feasible and continuously smooth docking trajectories by rolling optimization. Subsequently, a docking trajectory tracking control method based on nonlinear model predictive control (NMPC) is designed, which is specifically tailored to address thruster saturation and system state constraints while ensuring the feasibility and stability of the control system. The control performance and robustness of underwater docking were validated through simulation experiments. The optimized trajectory generated is continuous, smooth, and complies with the docking constraints. The control system demonstrates superior tracking accuracy than backstepping control, even under conditions where the model has a 40% error and bounded disturbances from currents are present. The research findings presented in this study contribute significantly to enhancing safety and efficiency in deep-sea development.

Funder

key technology projects of equipment for cold-seep ecosystem research of the Chinese Academy of Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3