Abstract
Municipal solid waste landfills are significant sources of atmospheric methane, the second most important greenhouse gas after carbon dioxide. Large emissions of methane from landfills contribute not only to global climate change, but also to local ozone formation due to the enhancement of radical chain lengths in atmospheric reactions of volatile organic compounds and nitrogen oxides. Several advanced techniques were deployed to measure methane emissions from two landfills in the Southeast Michigan ozone nonattainment area during the Michigan–Ontario Ozone Source Experiment (MOOSE). These techniques included mobile infrared cavity ringdown spectrometry, drone-mounted meteorological sensors and tunable diode laser spectrometry, estimation of total landfill emissions of methane based on flux plane measurements, and Gaussian plume inverse modeling of distributed methane emissions in the presence of complex landfill terrain. The total methane emissions measured at the two landfills were of the order of 500 kg/h, with an uncertainty of around 50%. The results indicate that both landfill active faces and leaking gas collection systems are important sources of methane emissions.
Funder
Environmental Protection Agency
United States Department of Energy
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Reference35 articles.
1. Intergovernmental panel on climate change (IPCC);Stocker,2013
2. The Spatial and Temporal Distribution Patterns of XCH4 in China: New Observations from TROPOMI
3. Basic Information about Landfill Gas;U.S. Environmental Protection Agency
4. California’s methane super-emitters
5. The California Methane Survey;Duren,2020
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献