ADASYN-LOF Algorithm for Imbalanced Tornado Samples

Author:

Qing ZhipengORCID,Zeng QiangyuORCID,Wang HaoORCID,Liu YinORCID,Xiong Taisong,Zhang Shihao

Abstract

Early warning and forecasting of tornadoes began to combine artificial intelligence (AI) and machine learning (ML) algorithms to improve identification efficiency in the past few years. Applying machine learning algorithms to detect tornadoes usually encounters class imbalance problems because tornadoes are rare events in weather processes. The ADASYN-LOF algorithm (ALA) was proposed to solve the imbalance problem of tornado sample sets based on radar data. The adaptive synthetic (ADASYN) sampling algorithm is used to solve the imbalance problem by increasing the number of minority class samples, combined with the local outlier factor (LOF) algorithm to denoise the synthetic samples. The performance of the ALA algorithm is tested by using the supporting vector machine (SVM), artificial neural network (ANN), and random forest (RF) models. The results show that the ALA algorithm can improve the performance and noise immunity of the models, significantly increase the tornado recognition rate, and have the potential to increase the early tornado warning time. ALA is more effective in preprocessing imbalanced data of SVM and ANN, compared with ADASYN, Synthetic Minority Oversampling Technique (SMOTE), SMOTE-LOF algorithms.

Funder

National Natural Science Foundation of China

the National Key R&D Program of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3