A Hurricane Initialization Scheme with 4DEnVAR Satellite Ozone and Bogus Data Assimilation (SOBDA) and Its Application: Case Study

Author:

Liu Yin1234ORCID

Affiliation:

1. Jiangsu Meteorological Observation Center, Nanjing 210041, China

2. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China

3. Key Laboratory of Atmosphere Sounding, China Meteorological Administration, Chengdu 610225, China

4. Key Laboratory of Transportation Meteorology, China Meteorological Administration, Nanjing 210041, China

Abstract

The aim of this study is to joint assimilate the ozone product from the satellite Atmospheric Infrared Sounder (AIRS) and bogus data using the four-dimensional ensemble-variational (4DEnVar) method, and demonstrate the potential benefits of this initialization technique in improving hurricane forecasting through a case study. Firstly, the quality control scheme is employed to enhance the ozone product quality from the satellite AIRS; a bogus sea level pressure (SLP) at the hurricane center is constructed simultaneously based on Fujita’s mathematical model for subsequent assimilation. Secondly, a 4DEnVar satellite ozone and bogus data assimilation (SOBDA) model is established, incorporating an observation operator of satellite ozone that utilizes the relationship between satellite ozone and potential vorticity (PV) from the lower level of 400 hPa to the upper level of 50 hPa. Finally, several comparative experiments are performed to assess the influence of assimilating satellite ozone and/or bogus data, the 4DEnVAR method and four-dimensional variational (4D-Var) method, and ensemble size on hurricane prediction. It is found that assimilating satellite ozone and bogus data with the 4DEnVar method concurrently brings about significant alterations to the initial conditions (ICs) of the hurricane vortex, resulting in a more homogeneous and deeper vortex with a larger, warmer, and more humid core as opposed to assimilating only one type of data. As the duration of integration increases, the initial perturbations in the upper levels gradually propagate downwards, giving rise to significant disparities in the hurricane prediction when satellite ozone and/or bogus information is incorporated. The results demonstrate that utilizing the 4DEnVar approach to assimilate both satellite ozone and bogus data leads to the maximum enhancement in reducing track error and central SLP error of hurricane simulation throughout the entire 72 h forecasting period, compared to assimilating a single dataset. Furthermore, comparative experiments have indicated that the performance of 4DEnVar SOBDA in hurricane forecasting is influenced by the ensemble size. Generally, selecting an appropriate number of ensemble members can not only effectively improve the accuracy of hurricane prediction but can also significantly reduce the demand for computational resources relative to the 4D-Var method. This study can also serve as an advantageous technical reference for numerical applications of ozone products from other satellites and hurricane initialization.

Funder

the Open Grants of the State Key Laboratory of Severe Weather

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference51 articles.

1. Atmospheric ozone and the upper-air conditions;Normand;Q. J. R. Meteorol. Soc.,1953

2. Relationships between ozone and meteorological parameters in the lower stratosphere;Ohring;J. Atmos. Sci.,1960

3. Stratospheric-tropospheric exchange based on radio-activity, ozone, and potential vorticity;Danielsen;J. Atmos. Sci.,1968

4. Browning, K. (1982). Nowcasting, Academic Press.

5. Nimbus-7 total ozone observations of western North Pacific tropical cyclones;Stout;J. Appl. Meteorol. Climatol.,1992

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3