Abstract
The variations in summer precipitation according to different grades and their effects on summer drought/flooding in the Haihe River basin were analyzed using the daily precipitation data from 161 meteorological stations from 1972 to 2021. The results showed that the number of rainy days (NRD) in summer in the Haihe River basin significantly declined in the past 50 years, mainly due to the reduction in the number of light-rain days. The precipitation amount (PA) exhibited prominent interdecadal characteristics, showing an upward tendency in the past 20 years accompanied by a remarkable increase in the proportion of torrential rain. The NRD in the northern part of the basin significantly decreased, while the PA in the southeast showed an increasing trend. Summer drought/flooding was strongly linked to the changes in the NRD and was predominantly affected by intense precipitation, with contribution rates of 5.5%, 16.8%, 31.2%, and 46.5% from light, moderate, heavy, and torrential rain, respectively. The effects of torrential rain increased in recent decades, particularly in the flooding scenarios. In addition, July was the critical period for summer drought/flooding, with the major influence of heavy and torrential rain. The most intense summer rainfall event in the Haihe River basin could contribute from 15% to 29% of total precipitation, resulting in changes in the severity and state of summer drought/flooding, which indicated that the precipitation process had a decisive impact on seasonal drought/flooding. Therefore, when predicting summer precipitation in the Haihe River basin, it is necessary to pay attention to the intense rainfall events during critical periods.
Funder
National Key R&D Program of China
National Natural Science Foundation of China
Doctoral Fund of Tianjin Meteorological Bureau
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献