Variation Characteristics of Rainstorms and Floods in Southwest China and Their Relationships with Atmospheric Circulation in the Summer Half-Year

Author:

Xie Qingxia,Gu Xiaoping,Li Gang,Tang Tianran,Li Zhiyu

Abstract

Local climates are responding to global warming differently, and the changes in rainstorms in mountainous areas of Southwest China are of particular interest. This study, using monthly NCEP/NCAR reanalysis and daily precipitation observation of 90 meteorological stations from 1961 to 2021, analyzed the temporal and spatial variation characteristics of rainstorms and floods in Southwest China and their relationship with atmospheric circulations. The results led us to the following five conclusions: (1) Rainstorms and floods in southwest China mainly occur from June to August, during which time July has the most weather events, followed by August. (2) The southwest of Guizhou province, the southern edge of Yunnan province, and regions from the east of the Sichuan Basin to the north of Guizhou have experienced more rainstorms and floods, while the northwest regions of Southwest China have had fewer. (3) Over the last 61 years, rainstorms and floods have exhibited an overall rising trend, especially in the last 10 years. The year 2012 was an abrupt inflection point in rainstorms and floods in Southwest China, from low to high frequency, while the correlation coefficient between rainstorms and floods and the global surface temperature is above the 95% significance level. (4) Rainstorms and floods exhibit changes at periods of 8 years, 16 years, and 31 years. (5) Rainstorms and floods show a good correlation with multiple variables, such as South Asian high-pressure systems west of 90°E, the upper trough front, the northwest side of the western Pacific subtropical high, and the convergence of warm and wet air in the middle and lower layers with cold air on the ground.

Funder

Guizhou Meteorological Bureau Program

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference27 articles.

1. GIS based risk evaluation for flood hazard in Shandong Province;Li;J. Chin. Agric. Sci. Bull.,2010

2. Analysis of the influence of heavy-rain and flood disaster on social economy and human life;Feng;J. Catastrophol.,2001

3. Division of flood-waterlogging hazard in Southwest China;Feng;J. Mt. Res.,1995

4. Yu, X., and Ma, Y. (2022). Spatial and Temporal Analysis of Extreme Climate Events over Northeast China. Atmosphere, 13.

5. Gu, J., Cui, X., and Hong, H. (2022). A Statistical-Based Model for Typhoon Rain Hazard Assessment. Atmosphere, 13.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3