Analysis of Spatial and Temporal Characteristics of Runoff Erosion Power in Fujiang River Basin Based on the SWAT Model

Author:

Jiang Kaixin1ORCID,Mo Shuhong1,Yu Kunxia1ORCID,Li Pingzhi2,Li Zhanbin1

Affiliation:

1. State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China

2. Shaanxi Electric Power Design Institute Co., Ltd., China Energy Engineering Group, Xi’an 710054, China

Abstract

As an erosion dynamic index considering the three elements of flood, runoff erosion power (REP) can better reflect the influence of precipitation, underlying surface, and other factors on the erosion and sediment transport (ST) of flood events. Therefore, it is of great significance to study the variation characteristics of the REP and its relationship with ST in the basin for soil erosion control. In this paper, the Fujiang River Basin (FRB) was selected to analyze the characteristics of runoff and ST at four hydrological stations in the basin from 2009 to 2018, including Santai, Jiangyou, Shehong, and Xiaoheba. Combined with the concept of the REP, six kinds of water–sediment relationship were compared and analyzed. Furthermore, by constructing the SWAT model, the spatial distribution characteristics of runoff, ST, and REP in the FRB were analyzed in depth, and the spatial scale effect of the REP in the basin was explored. The conclusions are as follows: (1) The power function relationship between REP and sediment transport modulus (STM) is better than the other five kinds of water–sediment relationship. (2) Based on the SWAT model, the evaluation indexes of the monthly runoff and ST of the four hydrological stations are credible, good, and excellent in the rating period (RP) and the validation period (VP). (3) The annual REP in the main stream from upstream to downstream is mostly a single change trend, while in each primary tributary, the overall value is larger than that of the main stream and the interannual difference is obvious. The average annual REP generally shows the distribution characteristics of ‘large at the junction of the upper and middle reaches and small in the rest of the area’. With the increase in the control area, the multi-year average REP has a decreasing trend, especially when the catchment area above the sub-watershed is >7318 km2; the change of the multi-year average REP is single and obviously slows down, with an average value of 23.8 mm·m3·s−1·km−2.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3