Advances in Ionospheric Space Weather by Using FORMOSAT-7/COSMIC-2 GNSS Radio Occultations

Author:

Liu Jann-YenqORCID,Lin Chien-Hung,Rajesh Panthalingal Krishnanunni,Lin Chi-Yen,Chang Fu-Yuan,Lee I-TeORCID,Fang Tzu-Wei,Fuller-Rowell Dominic,Chen Shih-Ping

Abstract

This paper provides an overview of the contributions of the space-based global navigation satellite system (GNSS) radio occultation (RO) measurements from the FORMOSAT-7/COSMIC2 (F7/C2) mission in advancing our understanding of ionospheric plasma physics in the purview of space weather. The global positioning system (GPS) occultation experiment (GOX) onboard FORMOSAT-3/COSMIC (F3/C), with more than four and half million ionospheric RO soundings during April 2006–May 2020, offered a unique three-dimensional (3D) perspective to examine the global electron density distribution and unravel the underlying physical processes. The current F7/C2 carries TGRS (Tri-GNSS radio occultation system) has tracked more than 4000 RO profiles within ±35° latitudes per day since 25 June 2019. Taking advantage of the larger number of low-latitude soundings, the F7/C2 TGRS observations were used here to examine the 3D electron density structures and electrodynamics of the equatorial ionization anomaly, plasma depletion bays, and four-peaked patterns, as well as the S4 index of GNSS signal scintillations in the equatorial and low-latitude ionosphere, which have been previously investigated by using F3/C measurements. The results demonstrated that the denser low-latitude soundings enable the construction of monthly global electron density maps as well the altitude-latitude profiles with higher spatial and temporal resolution windows, and revealed longitudinal and seasonal characteristics in greater detail. The enhanced F7/C2 RO observations were further applied by the Central Weather Bureau/Space Weather Operation Office (CWB/SWOO) in Taiwan and the National Oceanic and Atmospheric Administration/Space Weather Prediction Center (NOAA/SWPC) in the United States to specify the ionospheric conditions for issuing alerts and warnings for positioning, navigation, and communication customers. A brief description of the two models is also provided.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3