Automatic GNSS Ionospheric Scintillation Detection with Radio Occultation Data Using Machine Learning Algorithm

Author:

Ji Guangwang12,Jin Ruimin123,Zhen Weimin1,Yang Huiyun12

Affiliation:

1. China Research Institute of Radiowave Propagation, Qingdao 266107, China

2. National Key Laboratory of Electromagnetic Environment, Qingdao 266107, China

3. School of Electronic Engineering, Xidian University, Xi’an 710071, China

Abstract

Ionospheric scintillation often occurs in the polar and equator regions, and it can affect the signals of the Global Navigation Satellite System (GNSS). Therefore, the ionospheric scintillation detection applied to the polar and equator regions is of vital importance for improving the performance of satellite navigation. GNSS radio occultation is a remote sensing technique that primarily utilizes GNSS signals to study the Earth’s atmosphere, but its measurement results are susceptible to the effects of ionospheric scintillation. In this study, we propose an ionospheric scintillation detection algorithm based on the Sparrow-Search-Algorithm-optimized Extreme Gradient Boosting model (SSA-XGBoost), which uses power spectral densities of the raw signal intensities from GNSS occultation data as input features to train the algorithm model. To assess the performance of the proposed algorithm, we compare it with other machine learning algorithms such as XGBoost and a Support Vector Machine (SVM) using historical ionospheric scintillation data. The results show that the SSA-XGBoost method performs much better compared to the SVM and XGBoost models, with an overall accuracy of 97.8% in classifying scintillation events and a miss detection rate of only 12.9% for scintillation events with an unbalanced GNSS RO dataset. This paper can provide valuable insights for designing more robust GNSS receivers.

Funder

The National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference43 articles.

1. Zuo, Z.Y., Qiao, X., and Wu, Y.B. (2019, January 26–27). Concepts of comprehensive PNT and related key technologies. Proceedings of the 2019 International Conference on Modeling, Analysis, Simulation Technologies and Applications (MASTA 2019), Hangzhou, China.

2. Hess, V.F. (1912). Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten. Z. Phys., 13.

3. Large-scale ionospheric irregularities detected by ionosonde and GNSS receiver network;Jiang;IEEE Geosci. Remote Sens. Lett.,2020

4. Jiao, Y. (2017). Low-Latitude Ionospheric Scintillation Signal Simulation, Characterization, and Detection on GPS Signals. [Ph.D. Thesis, Colorado State University].

5. Li, Q., and Yin, P. (2018, January 23–25). The characteristic study of ionospheric scintillations over China based on GNSS data. Proceedings of the Ninth Annual China Satellite Navigation Symposium-S01 Satellite Navigation Application Technology 2018, Harbin, China.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ML based model for Detection of Ionospheric Scintillations using PolaRx5S data;2024 IEEE Space, Aerospace and Defence Conference (SPACE);2024-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3